
Comfort Eagle

White Dwarf Map Editor

Internal Documentation

Version 1.1

Revision History

Date Version Description Author
25/02/2002 1.0 Initial Revision W.D. Development Team
15/04/2002 1.1 Final Revision W.D. Development Team

i

Table of Contents

I Architecture Document 1

1 Introduction 3

1.1 Purpose . 3

1.2 Scope . 3

1.3 Definitions, Acronyms, and Abbreviations . 3

1.3.1 Definitions . 3

1.3.2 Acronyms . 4

1.3.3 Abbreviations . 4

1.4 References . 4

1.5 Overview . 4

2 Architectural Representation 5

3 Architectural Goals and Constraints 5

4 Use-Case View 6

4.1 Use-Case Realizations . 7

4.1.1 Build a Scenario Using the Wizard . 7

4.1.2 Add an Episode Using the Wizard . 8

4.1.3 Add a Formation Using the Wizard . 8

4.1.4 Add an Actor Using the Wizard . 8

5 Logical View 8

5.1 Overview . 9

5.1.1 System Layer . 9

5.1.2 Event Dispatcher . 9

5.1.3 Event Handler . 9

5.1.4 GUI Components . 9

5.1.5 Rendering Engine . 9

5.1.6 Resource Manager . 9

5.1.7 Managed Objects . 9

5.1.8 XML Accessor . 9

5.1.9 XML Parser . 10

5.2 Architecturally Significant Design Packages . 10

5.2.1 GUI Components . 10

5.2.2 Managed Objects . 10

5.2.3 XML Accessor . 10

iii

6 Process View 11

7 Deployement View 11

8 Implementation View 12

8.1 Overview . 12

8.2 Layers . 12

8.2.1 Application . 12

8.2.2 Low-Level Libraries . 12

8.2.3 Third-Party Libraries . 13

9 Data View 14

9.1 Files . 14

9.2 XML Data . 15

10 Size and Performance 17

11 Quality 17

12 Appendices 18

12.1 DTD Specifications . 18

12.2 Use-Case Diagrams . 19

12.3 State Diagrams . 22

12.4 Incremental Development Plan . 25

II Detailed Design 27

1 Module Implementation 29

1.1 Architecture Changes . 29

1.1.1 GUI Components and Services . 29

1.1.2 Resource Manager . 30

1.1.3 Rendering Engine and OpenGL . 30

1.2 Third-Party Modules . 30

iv

2 Design Notes 30

2.1 XML Accessors . 30

2.2 ManagedObjects . 31

2.2.1 The EventHandlers . 32

2.2.2 The ManagedObjects . 32

2.2.3 The ObjectManager . 32

2.3 MFC Classes . 32

2.3.1 The ObjectWindow . 32

2.3.2 The Wizard . 32

3 Reference Manual 33

III Testing 35

1 Test Plan 37

1.1 XML Accessors . 37

1.2 Managed Objects . 37

1.3 MFC Classes . 37

2 Testing Results and Quality Assessment 37

2.1 Process Used . 37

2.2 Results . 38

v

List of Figures

1 Logical View Design Diagram . 8

2 Process View Design Diagram . 11

3 Deployment View Design Diagram . 12

4 Implementation View Design Diagram . 13

5 Organization of the Media Files and Librairies . 14

6 DTD specifications for White Dwarf . 18

7 Use-Cases (Player Formation Related) . 19

8 Use-Cases (Image and Sound Related) . 19

9 Use-Cases (Advanced) . 20

10 Use-Cases (Formation Related) . 20

11 Use-Cases (Simple Interface) . 21

12 Use-Cases (Actor Related) . 21

13 UC-2 Build a Scenario Using the Wizard . 22

14 UC-5 Add an Episode Using the Wizard . 23

15 UC-35 Add a Formation Using the Wizard . 23

16 UC-20 Add an Actor Using the Wizard . 24

17 Revised Implementation View . 29

18 “XML Accessors” Module . 30

19 “ManagedObjects” Module . 31

20 “Wizard” Module . 33

List of Tables

1 Definitions . 4

2 Acronymns . 4

3 Abbreviations . 4

4 Use Cases List . 6

5 Incremental Development Plan . 25

vi

Architecture Document

White Dwarf Map Editor

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Section 1: Introduction

1 Introduction

1.1 Purpose

This SAD is intented to provide a comprehensive architectural overview of the White Dwarf Map Editor.
Number of different architectural views will be used to depict the different architectural concepts and decis-
sions that will be used as a base of design for the system.

1.2 Scope

The White Dwarf Map Editor will be developed by Comfort Eagle corporation to create a map for the White
Dwarf Game. This SAD document provides an architectural overview of the White Dwarf Map Editor. It
describes the architecture that will be used to meet the different functional and non-functional requirements
derived from the project proposal and inputs from the various stakeholders.

In order to reach a broad audience, the architecture will be presented using a number of different architectural
views as proposed by the Rational Software[4] 5+1 model for software architecture.

1.3 Definitions, Acronyms, and Abbreviations

The following is a list of definitions, acronyms and abbreviations that will facilitate the understanding of the
document.

1.3.1 Definitions

Actor Object displayed on the screen (e.g. a ship or a bullet). Actors have a type, initial
energy level, weapon and state definitions. During the game, at run time, they will be
assigned a dynamic position and amount of energy.

AI Controls the behavior of all the actors in a formation.
Chapter A playable section of the game. Chapters are invisible in the gamer’s perspective

since the transitions between them are done in a continous manner, even if some things
change like the scrolling speed, the music, the background image, and so on. Beginning
of chapters are also used as points where the player ship reappears after its death. The
chapter finishes when there are no more formations left within it.

Document
Type Defini-
tion

A formal grammar to a class of XML documents[1].

Episode A collection of chapters. It is presented to the gamer as one “level”. At the beginning
the name of the level is presented and at the end the ship exits the screen to go to the
next level.

Extensible
Markup
Language

A flexible, multi-dimensional, text-oriented markup language[1].

Formation Group of actors that can be controlled by a single AI. It is often seen in the game as
a fleet of ships moving together or as a “boss” with multiple body parts. It can also
wrap a single actor or even an item.

Gamer Someone who plays video games.
Game En-
gine

Modules of the game responsible of controlling the objects within the game. It is
usually closely linked with the AI and, of course, the map system.

Continued on next page. . .

c©Comfort Eagle Page 3 of 38

Internal Documentation–White Dwarf Map Editor
Section 1: Introduction

Version 1.1
Architecture Document

Media Sounds, images, animations, and so on.
Scenario Collection of maps, actors, AI and different media. Scenarios may contain several

episodes.
State Different status that an actor can have throughout the game. Shooting, hit, low on

energy or normal are different states that can be associated with an actor. For each
state, an image and a sound can be associated.

White Dwarf The tentative name of the game for which the game editor will be created.

Table 1: Definitions

1.3.2 Acronyms

AI Artificial Intelligence
DTD Document Type Definition[1]
FAQ Frequently Asked Questions
SSME Space Shooter Map Editor
SAD Software Architecture Document
GUI Graphical User Interface
GPU Graphical Processing Unit
RAM Random Access Memory
UI User Interface
XML Extensible Markup Language[1]

Table 2: Acronymns

1.3.3 Abbreviations

NA Not Applicable
s/he He/She

Table 3: Abbreviations

1.4 References

[1] World Wide Web Consortium. Extensible markup language (xml) 1.0 (second edition). http://www.w3.
org/TR/2000/REC-xml-20001006.

[2] Philippe Kruchten. The 4+1 view model of architecture. http://www.rational.com/media/
whitepapers/Pbk4p1.pdf.

[3] David Garland Mary Shaw. Software Architecture: Perspectives on an Emerging Discipline. Prentice
Hall, 1996.

[4] Rational software. http://www.rational.com.

1.5 Overview

This SAD presents the architecture of the White Dwarf Map Editor system using a set of different views
on the system. The views shown in this document are directly derived from the 5+1 model for software

Page 4 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Section 2: Architectural Representation

architecture proposed by Rational Software[4].

Each view proposed will be accompanied by an explanation of the various components it contains and how
they interact with each other. Furthermore, each view will also be depicted visually using one or more
diagrams. The diagrams presented to facilitate the understanding will follow the notation described in the
4+1 architectural model[2].

2 Architectural Representation

The architecture of the system will be presented using the following views: use case view, logical view,
process view, deployment view, the implementation view and finally the data view.

The use case view will consist of a division of the various tasks that the distinct stakeholders can perform
with the system using actors and use cases. This view will be used to derive, elicit and validate the different
requirements of the system.

The logical view will be used to decompose the system into a set of key abstraction that will be utilized
to fulfill the functional requirements of the system. It will provide a high-level breakdown of the system in
terms of objects and object classes and their relations.

The process view will divide the system in terms of processes, threads and tasks in order to show how the
system will reach the non-functional requirements. This view is useful to show the different threads of control
and concurrency present within the system.

The deployment view will also be used to represent non-functional requirements. This view will show how
the different processes identified in the process view are mapped to the different processing nodes available.

The implementation view will depict how the system will be physically decomposed. This view is intented
to show how the system will be organized in terms of libraries and subsystem. Looking at this view, it will
be easy to see which components are shared among the different modules of the system and which ones are
reused from existing libraries.

The data view is intended to show how the system and the scenario it creates will be arranged at the files
and directories level.

3 Architectural Goals and Constraints

There are some key requirements and system constraints that have a significant bearing on the architecture.
These are:

1. The White Dwarf Map Editor must be consistent and useable with White Dwarf Game since it will be
eventually integrated with the latter.

2. The White Dwarf Map Editor must use the White Dwarf Game game engine to render and display the
map, i.e. the terminology and concepts must be easily recognizable from the game.

3. The White Dwarf Map Editor UI must be representative of the White Dwarf Game.

4. The White Dwarf Map Editor must provide a sophisticated UI for the developers of the game, enabling
them to quickly create new exciting scenarios.

5. The White Dwarf Map Editor must also please to the new players of the game, by providing an intuitive
UI with simple language and concepts.

6. The White Dwarf Map Editor must run in the Windows 2000 labs at Concordia University. All
hardware and software constraints must be taken into account.

c©Comfort Eagle Page 5 of 38

Internal Documentation–White Dwarf Map Editor
Section 4: Use-Case View

Version 1.1
Architecture Document

7. The White Dwarf Map Editor should use XML to store configurations of the scenario.

Being that the software is an editor, the design of White Dwarf Map Editor will have a user-centered
approach, that is to say, that the design of the UI will have a significant impact on the architecture of the
software.

4 Use-Case View

The following is a list of use cases that represent some significant or central functionality to the final
system. However, only a few of the most important use cases will be used to do the main success scenarios.
Architecturely speaking, the other use case scenarios are simply a variation of the ones listed in Section 4.1.

The Use-Case Diagrams are in Appendix 12.2 on page 19.

UC-1 Create a New Scenario UC-2 Build a Scenario Using the Wizard
UC-3 Build a Scenario Using the Wizard UC-4 View a Scenario
UC-5 Add a New Episode UC-6 Add an Episode using the Wizard
UC-7 Remove an Episode UC-8 View an Episode
UC-9 Change the Episode Order UC-10 Add a Chapter
UC-11 Remove a Chapter UC-12 View a Chapter
UC-13 Change the Chapter’s Order UC-14 Change a Chapter’s Music
UC-15 Change a Chapter’s Background UC-16 Change a Chapter’s Scrolling Speed
UC-17 Add a Formation to a Chapter UC-18 Remove a Formation from a Chapter
UC-19 Move a Formation in a Chapter UC-20 Add a New Actor
UC-21 Add an Actor Using the Wizard UC-22 Remove an Actor
UC-23 View an Actor UC-24 Change an Actor’s name
UC-25 Change an Actor’s Default Image UC-26 Change an Actor’s Type
UC-27 Change an Actor’s Weapon UC-28 Change an Actor’s Item
UC-29 Add a State to an Actor UC-30 Remove a State to an Actor
UC-31 View the State of an Actor UC-32 Change the Image of a State
UC-33 Change the Sound of a State UC-34 Change the Name of a State
UC-35 Add a New Formation UC-36 Add a Formation Using the Wizard
UC-37 Remove a Formation UC-38 View a Formation
UC-39 Change the Type of a Formation UC-40 Change the Name of a Formation
UC-41 Add an Actor to a Formation UC-42 Remove an Actor from a Formation
UC-43 Change the Role of an Actor in a For-

mation
UC-44 Change the Item of a Formation

UC-45 Import an Image UC-46 Remove an Image
UC-47 Change the Name of an Image UC-48 Import a Sound
UC-49 Remove a Sound UC-50 Change the Name of a Sound
UC-51 Add a New Player Formation UC-52 Add a Player Formation Using the

Wizard
UC-53 Remove a Player Formation UC-54 View a Player Formation
UC-55 Change the Type of a Player UC-56 Add an Actor to a Player
UC-57 Remove an Actor from a Player For-

mation
UC-58 Change the Role of an Actor in a

Player Formation

Table 4: Use Cases List

Some use case scenarios will be investigated further in Section 4.1. For now lets look at a brief description
of some scenarios to try to understand the motivation of the user in taking these actions.

Page 6 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Section 4: Use-Case View

• UC-2 Build a Scenario Using the Wizard

New users can use the “Scenario Wizard” to easily create a new scenario and all its contents, including
the episodes, chapters, formations, actors, and so on.

• UC-4 Add a New Episode

The developers and avid users will want to build episodes for the game. Episodes are commonly known
as a levels in the gaming jargon.

• UC-9 Add a Chapter

The user can add new chapters to already existing episodes or new episodes they created themselves.

• UC-34 Add a New Formation

The user can create new formations of actors. They can be placed in any chapter they desire once they
are created.

• UC-19 Add a New Actor

The user can add any number of actors to any formation.

• UC-28 Add a State to an Actor

As stated in Section 1.3.1, actors are objects displayed on the screen. Each actor has states, for example
a dead state, shot state, normal state, boosted state, and so on. For example we could add an invicible
state to a ship.

• UC-42 Change the Role of an Actor in a Formation

Formations are goups of actors that are a controlled by a single AI. Each actor has a specific role from
the point of view of the AI. This use case allows the user to change the role of an actor in its formation.
For example, there could be a ship formation, and one of the ship could be the “head ship” of the
formation. This use case allows the user to specify which ship in the formation is the “head” one.

• UC-13 Change a Chapter’s Music

Each chapter has a music associated to it. A user may decide to add or change the music played in
some chapter.

• UC-44 Import an Image

The user can import an image in a scenario. The image can then be used for an actor’s state or for
the background of a chapter.

4.1 Use-Case Realizations

To better understand the interaction of the user with the systemn, for each scenario listed in Section 4 a
detailed description and a sequence diagram will be given.

4.1.1 Build a Scenario Using the Wizard

In this Use-Case, the user must be helped to create a new scenario. To create a proper scenario, the user
must at minimum create one player formation and one episode. Thus, this Use-Case will make use of the Use-
Cases “UC-51 Add a Player Formation Using the Wizard” and “UC-5 Add an Episode using the Wizard”.
Those wizards will be called once for each new player formation or episode that the user want to create.

The state diagram for this Use-Case is in Figure 13 on page 22.

c©Comfort Eagle Page 7 of 38

Internal Documentation–White Dwarf Map Editor
Section 5: Logical View

Version 1.1
Architecture Document

4.1.2 Add an Episode Using the Wizard

The episode wizard guides the user into the creation of a new episode. The user is allowed to add chapters
and change the settings of each of Additionally, the user may decide to create a new formation before adding
it to the chapter. In such a case, the creation of the new formation is delegated to the Formation Wizard.

The state diagram for this Use-Case is in Figure 14 on page 23.

4.1.3 Add a Formation Using the Wizard

The formation wizard allows the user to create a new formation with step by step instructions. S/he will be
given a chance to add actors to the formation and even to create a new actor if it doesn’t already exist. In
that case, the work is delegated to the Actor Wizard.

The state diagram for this Use-Case is in Figure 15 on page 23.

4.1.4 Add an Actor Using the Wizard

The actor wizard guides the user into a step by step creation of an actor. This involves setting the parameters
of the actor and its states.

The state diagram for this Use-Case is in Figure 16 on page 24.

5 Logical View

System

Layer

Event

Dispatcher

Event

Handler

GUI

Components

Display

Engine

Managed

Objects

Ressource

Manager

XML

Accessor

XML Parser

Association

Inheritance

Usage

 Class

Class Category

Legend

Figure 1: Logical View Design Diagram

Page 8 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Section 5: Logical View

5.1 Overview

Editors normally adopt the blackboard architecture style[3] since they are a collection of tools that operate
on a shared data space.

5.1.1 System Layer

This is the UI part of the operating system and is shown here only for completeness. It is the System Layer
itself that displays the GUI widgets and stores their properties. The System Layer has access to the Event
Dispatcher to create and receive new events from and to the different GUI widgets it manages.

5.1.2 Event Dispatcher

The Event Dispatcher is also part of the operating system and is shown here only for completeness. The
Event Dispatcher is in charge of sending and receiving events to the registered Event Handler of the user
application. Here, the events are UI events which mostly correspond to user input and output.

5.1.3 Event Handler

The Event Handler is part of the White Dwarf Map Editor. Whenever the Event Dispatcher of the operating
system needs to send an event to the White Dwarf Map Editor application, it does so by calling the Event
Handler function with the event parameters.

5.1.4 GUI Components

The GUI Components provide an interface to the user to interact with the system. They are buttons,
windows, scrollbars, etc. They receive user events through the Event Handler interface and react by either
performing the task requested by the user or by delegating the task to another component by sending an
internal event. More information on this topic in Section 5.2.1

5.1.5 Rendering Engine

A group of functions that are specialized at rendering the game components on screen.

5.1.6 Resource Manager

A set of utility functions made to simplify access to the various media files the editor needs to move, copy,
remove and preview.

5.1.7 Managed Objects

The various objects which the editor needs to add and modify in the scenario data. More information on
this topic in Section 5.2.2.

5.1.8 XML Accessor

A set of functions used as a proxy to the actual XML data, as produced by the XML Parser. More information
on this topic in Section 5.2.3.

c©Comfort Eagle Page 9 of 38

Internal Documentation–White Dwarf Map Editor
Section 5: Logical View

Version 1.1
Architecture Document

5.1.9 XML Parser

This is a validating XML parser and generator. In other words, it can put in memory a structure representing
an XML file on disk (“parser”), validate the memory structure based on a XML DTD (“validator”), and
properly put back on disk the memory structure (“generator”).

5.2 Architecturally Significant Design Packages

5.2.1 GUI Components

The GUI components provide an interface for the user to interact with the system. They respond to GUI
events by changing the state of the software.

GUI events can originate from the operating system or from the Managed Objects. The events received from
the operating system will be handled through a callback system, while the events received from the Managed
Objects will be handled through a subscriber system.

The events from the operating system will reach the event dispatchers first. These behave as adapters to
dispatch the events to the GUI Components. Those events are direct consequence of an action from the user.

The events from the Managed Objects will be sent directly through the Event Handler interface and result
from a modification to the XML data (e.g. if a node was removed, added or modified). When the GUI
components need to display information about an XML node, they provide their Event Handler interface
and expect to be informed whenever the XML node is modified. That way, they can react by updating the
screen or closing if the node was deleted.

5.2.2 Managed Objects

The Managed Objects are object-oriented representations of the various information that need to be stored
for a scenario. Each class is a proxy of the actual operations done on the parsed XML data, in memory,
through the XML Accessor functions.

The primary goal of the Managed Objects is to ensure that the XML data remains valid, i.e. follows the
rules of the DTD file (refer to Section 9). This simplifies the use of the XML data, as it is not required to
constantly worry about what rules need to be followed to make sure the XML data remains valid.

Also, the Managed Objects do whatever conversion is needed to convert the data, as it is logically seen, into
properly formatted XML data. This includes converting numbers between their numerical value in memory
and their latin-iso-1 character representation.

The term “Managed” in “Managed Objects” means that this component is always aware of what elements
in the XML data are currently referenced. This means, for example, that any class that makes use of some
Managed Object will be informed when another class removes that object from the XML data. This is done
by sending some events to the Event Handler.

5.2.3 XML Accessor

A collection of straightforward, low-level functions which read and modify the parsed XML data. In this
module, the data is modified without any restriction.

All operations that might need to be done on the XML data need to be implemented here. This includes,
but is not limited to:

• Find an element from its ID.

Page 10 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Section 6: Process View

• Add a new element.

• Enumerate through the list of attributes of an element.

• Change the ordering of two elements.

• Change the value of an attribute.

This is done primarily because the system will use a “third-party” XML Parser. Using this architecture
scheme, it will be easily feasible to change to any other kind of XML Parser, without requiring too much
overhead since only this component will need to be changed.

6 Process View

Since every window of the system must concurently proccess information in order to be correctly updated
each of them will executed in a separate thread of control.

The window were the actual chapter is rendered and display, called Chapter Display, will be threated differ-
ently from the other windows since it will need to use the OpenGL libraries and the game engine.

Window Window Window

...

Map Editor

Process

Legend

Chapter

Display

Figure 2: Process View Design Diagram

7 Deployement View

Although the system would take advantage of a system with multiple processors, where the load of each
window thread could be shared, the minimal requirement is a single processor machine with a graphics card
supporting OpenGL hardware acceleration. Typically, the system should work with 50MB of disk space and
32MB of available RAM.

All the threads except the Chapter Display will be processed by the main processor. The Chapter Display
will be processed on the GPU of the graphics card.

c©Comfort Eagle Page 11 of 38

Internal Documentation–White Dwarf Map Editor
Section 8: Implementation View

Version 1.1
Architecture Document

Window Window Window
Chapter

Display

Legend

Processing Node

Process

Bidirectional

Communication

Unidirectional

Communication

Central Processing Unit Graphic Processing Unit

Figure 3: Deployment View Design Diagram

8 Implementation View

8.1 Overview

Application The application layer provides a graphical interface that allows the user to access and modify
the XML data of the scenario. It relies entirely on the servies of the layer immediately below it, and thus
it is platform independant. The application is the logic of the software, and it implements this logic with
using the low-level library services.

Low-Level Libraries Low-level libraries consist of shared code between the game and the editor. Those
will be the core of the editor, and their reuse in the game will ensure consistency between the two. They
are also platform independant and can be thought as specialisations of the third-party libraries in order to
provide high level services to the application. This layer is as platform independant as the third-party library
they are built with.

Third-Party Librarties Third-party libraries are the building blocks of the application. They provide
the most basic services, such as XML validation and parsing, display of windows and widgets and 2D graphics
rendering.

8.2 Layers

8.2.1 Application

Editor Engine: The Editor Engine provides graphical tools to manage the XML Objects. It is written in
C++.

8.2.2 Low-Level Libraries

XML Object LIbrary: The XML Object Library provides services to reading and writing Managed
Objects from XML data. This library will be shared between the editor and the game. Although internally
it will be written in C++, it will provide a C interface so that it can be loaded and linked dynamically.

Page 12 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Section 8: Implementation View

Editor

Engine

XML

Objects

Library

Rendering

Engine

Validating

XML Parser/

Generator

A
p
p
lic
a
ti
o
n
 S
p
e
c
ifi
c

D
o
m
a
in
 I
n
d
e
p
e
n
d
a
n
t

Application

Low-Level

Libraries

Third-Party

Libraries

Module

Reference

Legend

Win32 OpenGL

GUI

Services

Figure 4: Implementation View Design Diagram

GUI Services: The GUI Services play the role of an adapter between the operating system GUI compo-
nents (windows and widgets) and the Engine Editor. This scheme provides a way to keep the Editor Engine
platform independant. It will be written in C++. Although it is considered that the system will eventually
have different ports, it will initially be written using the MFC services. The GUI Services implement the
GUI Components. As the public interface of this module is in C++, it will be statically linked with the
Editor Engine.

Rendering Engine: The Rendering Engine provides services to display a chapter on the screen. This
library will be used both in the editor and in the game and will be written in C using the OpenGL libraries.

8.2.3 Third-Party Libraries

XML Parser We will use libxml to parse the XML from the ascii file. This component will be statically
linked to the XML Object Library.

Win32 The GUI Services component will be dynamically linked to Win32.

OpenGL The graphics for the preview of the chapters will be done using the services of OpenGL. This
component will be dynamically linked to the Rendering Engine.

c©Comfort Eagle Page 13 of 38

Internal Documentation–White Dwarf Map Editor
Section 9: Data View

Version 1.1
Architecture Document

9 Data View

9.1 Files

Figure 5 shows how the media files and libraries will be organized on the file system. A word in italics means
that it is a directory (the trailing slash can be ignored), otherwise it is a file. The names shown here were
chosen only as examples and may change during development.

• White Dwarf Game

• White Dwarf Map Editor

• Libraries/

– Rendering Library

– XML Library

– . . .

• Resources/

– Image1.png

– Image2.png

– . . .

– Sound1.aif

– Sound2.aif

– . . .

• Scenarios/

– Scenario1 /

∗ data.xml
∗ Resources/
· NewImage.png
· NewSound.aif
· . . .

– Scenario2 /

– . . .

Figure 5: Organization of the Media Files and Librairies

The directory “Libraries” contains code libraries that will be used both by the White Dwarf Game and the
White Dwarf Map Editor. This is why the directory is at the same level as both the Game and the Map
Editor.

The directory “Resources” which is at the same level as the White Dwarf Game and White Dwarf Map Editor
contains the media shared amongst all the different scenarios of the game.

The directory “Scenarios” contains the different scenarios that can be played in the White Dwarf Game or
edited in the White Dwarf Map Editor.

Even if a scenario is self-contained, since each one has its own “Resources” directory containing their own
media files, it can also access the shared media found in the top-level “Resources” directory. Obviously, the

Page 14 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Section 9: Data View

White Dwarf Map Editor will not allow the user to change the shared media, since all scenarios will assume
that it was not modified and they might not work if the shared media was changed.

Finally, the information for a scenario is contained in a single XML file (here, “data.xml”) that was generated
earlier by the White Dwarf Map Editor.

9.2 XML Data

As often mentioned earlier, the information for a scenario is stored in an XML file. The advantages of doing
so are:

1. Several third-party libraries can already parse, validate and generate XML files;

2. XML can easily represent multi-dimentional structures;

3. XML documents can be validated by a DTD which formally captures almost all the requirements of
the data;

4. XML documents can be examined and edited with any text editor.

Figure 6 on page 18 shows the DTD file that will be used by the White Dwarf Map Editor and the White
Dwarf Game to validate the data XML file of a scenario. Note that the file can change during the develop-
ment.

From Figure 6, we can see several things.

An episode contains at least one chapter, a chapter contains at least one reference to a formation, a formation
has at least one reference to an actor, and so on.

Here, references are used whenever an element can be referenced more than once. Otherwise, if an element
can be referenced only once, we put the element within the other element that contains it.

Note that it is a limitation of XML that while an IDREF references an ID attribute of another tag, it cannot
be specified what tag it should be specifically referencing. This is currently the only data requirement that
cannot be fully covered by the DTD.

The first ELEMENT, which is for the whole document, lists all the elements that are at the “root level” of
the XML data. All the other elements are rooted at another element.

Here’s a quick explanation of the different elements that the White Dwarf Map Editor can generate. Most
of the terms used here are defined in Section 1.3.1.

episode

An episode should contain at least one chapter.

chapter

A chapter contains at least one reference to a formation. It needs to be within a single episode.

The attribute music refers to a sound element. speed is a numerical value which represents the scrolling
speed of the chapter.

speed is a human-readable integer in decimal representation. It can be negative.

c©Comfort Eagle Page 15 of 38

Internal Documentation–White Dwarf Map Editor
Section 9: Data View

Version 1.1
Architecture Document

background

A background is an image that scrolls as the chapter scrolls on screen.

The attribute image refers to an iamge element. layer is a numerical value which represents the relative
depth of the background layer.

layer is a human-readable floating point number in decimal representation.

formationRef

A formation reference is a reference to a formation element. It contains some additional information to
make it relevent in a chapter, for example its position (x and y).

x and y, like most of the other numerical values in the DTD, are represented in human-readable decimal
values. They can be negative.

formation

A formation is the information globally meaningful to the formation of actors. It contains zero or more
references to an actor, which are the initial actors available in the formation.

The attribute ai is a constant which refers to some game function that will control the actors in the formation.
item refers to a formation which will be “dropped” in the game whenever the formation is destroyed.

player

A player formation is a special kind of formation which is controlled by the gamer. At least one player
formation must exist in the XML data.

actorRef

An actor reference is a reference to an actor. It is used by formation and player.

actor

An actor is referenced by a formation or a player.

The attribute image refers to an image element. The attribute type refers to some game function that will
control the actor’s states. weapon refers to a formation which is controlled by the actor. item, what is
“dropped” when the actor is destroyed, refers again to a formation.

The actor has zero or more states.

state

A state simply has a name and refers to an image and a sound.

image

An image simply refers to a fileName given someid. The id is always the one used in the XML data to refer
to the image so that the file name can be changed without having to change all the elements that refer to it.

Page 16 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Section 10: Size and Performance

sound

Similar to image, a sound refers to a fileName given some id.

10 Size and Performance

The chosen architecture will support the following size and performance requirements:

1. The White Dwarf Map Editor must require less than 50MB of disk space.

2. The White Dwarf Map Editor must require less than 32MB of RAM.

3. The White Dwarf Map Editor must be able to save the current work within 10 seconds.

4. The size of the scenario created by the White Dwarf Map Editor must be sufficiently small to permit
reasonable download time.

11 Quality

The chosen architecture will support the following quality requirements:

1. The GUI must be compliant with Windows 2000.

2. The GUI must be presented with intuitive concepts. Using the system main functions should be very
intuitive. Anyone familiar with side scroller games should be able to use the basic functionalities of
the SSME by interacting with it less than 30 minutes.

3. The GUI of the SSME must be representative features supported by the White Dwarf Game.

4. The GUI must reflect the organization of a scenario.

5. The White Dwarf Map Editor must create scenario in a format that allows easy on-line distribution.

6. The White Dwarf Map Editor must create backup intermittently.

7. The software will contain a help menu which will provide the first source of help. It will be useful to
solve simple problems and answer general questions that the user might have.

c©Comfort Eagle Page 17 of 38

Internal Documentation–White Dwarf Map Editor
Appendices

Version 1.1
Architecture Document

12 Appendices

12.1 DTD Specifications

1 <!ELEMENT scenario (episode+, player+, formation*, actor*, image*, sound*)>

<!ELEMENT episode (chapter+)>
<!ELEMENT chapter (formationRef+) (background*)>

5 <!ATTLIST chapter music IDREF #IMPLIED>
<!ATTLIST chapter speed CDATA #IMPLIED>
<!ELEMENT background EMPTY>
<!ATTLIST background image IDREF #REQUIRED>
<!ATTLIST background layer CDATA #REQUIRED>

10 <!ELEMENT formationRef EMPTY>
<!ATTLIST formationRef x CDATA #REQUIRED>
<!ATTLIST formationRef y CDATA #REQUIRED>
<!ATTLIST formationRef id IDREF #REQUIRED>

15 <!ELEMENT formation (actorRef*)>
<!ATTLIST formation id ID #REQUIRED>
<!ATTLIST formation ai CDATA #REQUIRED>
<!ATTLIST formation item IDREF #IMPLIED>
<!ELEMENT player (actorRef+)>

20 <!ELEMENT actorRef EMPTY>
<!ATTLIST actorRef name IDREF #REQUIRED>

<!ELEMENT actor (state*)>
<!ATTLIST actor name ID #REQUIRED>

25 <!ATTLIST actor image IDREF #REQUIRED>
<!ATTLIST actor type CDATA #REQUIRED>
<!ATTLIST actor weapon IDREF #IMPLIED>
<!ATTLIST actor item IDREF #IMPLIED>
<!ELEMENT state EMPTY>

30 <!ATTLIST state name CDATA #REQUIRED>
<!ATTLIST state image IDREF #IMPLIED>
<!ATTLIST state sound IDREF #IMPLIED>

<!ELEMENT image EMPTY>
35 <!ATTLIST image id ID #REQUIRED>

<!ATTLIST image fileName CDATA #REQUIRED>
<!ELEMENT sound EMPTY>
<!ATTLIST sound id ID #REQUIRED>
<!ATTLIST sound fileName CDATA #REQUIRED>

Figure 6: DTD specifications for White Dwarf

Page 18 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Appendices

12.2 Use-Case Diagrams

Deve lope r
UC-3: View a Scenario

(from Logical View)

UC-54: Change the Type of a Player
Form ation

UC-55: Add an Actor to a Player
Form ation

UC-56: Rem ove an Actor from a
Player Form ation

Advanced User

UC-57: Change the Role of an Actor
in a Player Form ation

<<Uses>>

Figure 7: Use-Cases (Player Formation Related)

Developer

UC-3: View a Scenario

(from Logical View)

UC-46: C hange the Nam e of an
Image

<<Uses>>

UC-49: Change the Nam e of a
Sound

<<Uses>>

Advanced User

Figure 8: Use-Cases (Image and Sound Related)

c©Comfort Eagle Page 19 of 38

Internal Documentation–White Dwarf Map Editor
Appendices

Version 1.1
Architecture Document

Figure 9: Use-Cases (Advanced)

Developer

UC-38: Change the Type of a
Form ation

UC-39: Change the Name of a
Form ation

UC-4 0: Add an Actor to a Form ation

UC-41 : Rem o ve an Actor from a
Form ation

UC-42: Chang e the Role of an Ac tor
in a Form ation

UC-43: Change the Item of a
Form ation

Advanced User

UC-3: View a Scenario

Figure 10: Use-Cases (Formation Related)

Page 20 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Appendices

Developer

Advanced User

UC-2: Build Scenario Us ing Wizard

UC-5: Add Episode Us ing Wizard

UC-20: Add Actor Us ing Wizard

UC-35: Add Formation Us ing Wizard

UC-51: Add Player Form ation Us ing
Wizard

UC-3: Vi ew a Sce nario

UC-44: Im port an Im age

UC-47: Im port a Sound

New User

Figure 11: Use-Cases (Simple Interface)

Deve loper

UC-23: Change an Acto r’s Name

UC-24: C hang e an Actor’s Default
Im age

UC-25: Change an Actor Type

UC-26: Change an Actor’s Weapon

UC-30: View the State of an Actor

UC-31: Change the Sound of a State

<<Uses>>

UC-33: Change the Nam e of a State<<Uses>>

UC-27: Change an Actor’s Item

UC-28: Add a State to an Actor

UC-29: Rem ove a State to an Actor

UC-32: Change the Im age of a State

<<Uses>>

Adva nced User

UC-3: View a Scenario

Figure 12: Use-Cases (Actor Related)

c©Comfort Eagle Page 21 of 38

Internal Documentation–White Dwarf Map Editor
Appendices

Version 1.1
Architecture Document

12.3 State Diagrams

C
ancel

Save New Scenario

New Player Wizard
Guides the user into creating a new player

More

Players?

Y
es

N
o

New Episode Wizard
Guides the user into creating a new episode

More

Episodes?

Y
es

N
o

Figure 13: UC-2 Build a Scenario Using the Wizard

Page 22 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Appendices

C
ancel

Request Music and Background
Ask the user to choose the music and
background image for this part of the level

Request Scroll Speed
Ask the user to choose the speed at which this
part of the level should scroll

O
K

P
re
v
io
u
s

Add Formations
Let the user add formations to this part of the
level. Also give him a chance to create new
formations.

O
K

P
re
v
io
u
s

New Formation

New Formation Wizard
OK/Cancel

Request Level Has More Parts
Ask the user if the level has more parts

O
K

P
re
v
io
u
s

Y
E
S

N
O

Add the Level to the Scenario

Figure 14: UC-5 Add an Episode Using the Wizard

Request Formation Name
Ask the user to enter a unique formation name

Name Already Taken
Explain that the name is already
taken and that the episode could
not be created.

Name Taken

OK

O
K

C
a
n
c
e
l

Request Formation Type
Ask the user to choose the type of formation

Add Actor To Formation
Ask if the user wishes to add another actor to
the formation.

P
re
v
io
u
s

O
K

P
re
v
io
u
s

Set Actor Role
Set the role of the actor

A
d
d

New Actor

New Actor WizardOK/Cancel

Add the Actor to the Formation

O
K

C
a
n
c
e
l

Done

Add the Formation to the Scenario

Figure 15: UC-35 Add a Formation Using the Wizard

c©Comfort Eagle Page 23 of 38

Internal Documentation–White Dwarf Map Editor
Appendices

Version 1.1
Architecture Document

Request Actor Name
Ask the user to enter a unique actor name

Name Already Taken
Explain that the name is already
taken and that the episode could
not be created.

Name Taken

OK

O
K

Cancel

Request Actor Type
Ask the user to choose the type of actor

Add State To Actor
Ask if the user wishes to add states to the actor

P
re
v
io
u
s

O
K

P
re
v
io
u
s

Set State Type
Set the type of the state

A
d
d

Set State Image and Sound
Associate an image and a sound to the state

O
K

Done
Add the Formation to the Scenario

Name Already Taken
Explain that the name is already
taken and that the episode could
not be created.

Name Taken

OK

Add the State to the Actor

O
K

C
a
n
ce
l

Import Image
Add Image

Add Sound
Import Sound

Figure 16: UC-20 Add an Actor Using the Wizard

Page 24 of 38 c©Comfort Eagle

Version 1.1
Architecture Document

Internal Documentation–White Dwarf Map Editor
Appendices

12.4 Incremental Development Plan

The development will be splited in three parts. One team will work on the XML services while the other
one will work on the implementation of the GUI. Both teams will work separately using a driver and a
stub respectively. When the projects are mature enough, they will be liked together through an additional
even-based layer.

Table 5 presents the incremental plan.

Increment ID Description
1 Implementation of the Validation and I/O

XML functions
Implementation of the GUI primitives

2 Implementation the XML Node and XML
check-out and check-in services

Implementation of the Dialogs

3 Implementation of the Managed Object
Layer

Implementation of the Chapter Rendering

4 Implementation of the event callback support and replacing the stub and driver with
actual modules.

Table 5: Incremental Development Plan

c©Comfort Eagle Page 25 of 38

Internal Documentation–White Dwarf Map Editor
Appendices

Version 1.1
Architecture Document

Page 26 of 38 c©Comfort Eagle

Detailed Design

White Dwarf Map Editor

Version 1.1
Detailed Design

Internal Documentation–White Dwarf Map Editor
Section 1: Module Implementation

1 Module Implementation

1.1 Architecture Changes

MFC

Classes

Managed

Objects

libxml2

A
p
p
lic
a
ti
o
n
 S
p
e
c
ifi
c

D
o
m
a
in
 I
n
d
e
p
e
n
d
a
n
t

Application

Low-Level

Libraries

Third-Party

Libraries

Module

Reference

Legend

Win32

XML

Accessors

High-Level

Libraries

Figure 17: Revised Implementation View

If you compare Figure 17 with Figure 4 on page 13, you can see that several changes were made. The “GUI
Components” have been replaced with MFC Classes, the “GUI Services”, “Rendering Engine” and OpenGL
modules were removed, and the MFC Classes use directly Win32.

Also, if you look at Figure 1 on page 8, the logical modules “Display Engine” and “Resource Manager” were
removed.

Below is explained why those changes were made to the architecture during development.

1.1.1 GUI Components and Services

GUI Components to MFC Classes

GUI Components and Services would have required a complete cross-platform GUI wrapper, which is a new
project by itself. . .

MFC forces us to greatly increase coupling between GUI elements and the “logic” they implement. . .

c©Comfort Eagle Page 29 of 38

Internal Documentation–White Dwarf Map Editor
Section 2: Design Notes

Version 1.1
Detailed Design

1.1.2 Resource Manager

Resource Manager (gone)

1.1.3 Rendering Engine and OpenGL

Rendering Engine will be done with the game itself. . .

1.2 Third-Party Modules

Some modules were already implemented by other developers.

The “XML Parser” module is libxml21, part of the open-source Gnome Project2.

The modules “Event Handler”, “Event Dispatcher” and “System Layer” are either part of Microsoft’s Win32
library or the Microsoft Foundation Classes (MFC).

2 Design Notes

2.1 XML Accessors

libxml2

libxml/

xmlmemory.h

libxml/

parser.h

XML Accessors

Other Headers

Legend

Module

Header

Figure 18: “XML Accessors” Module

The “XML Accessors” module is basically a facade to the third-party XML parser, generator and validator,
here libxml2. This is required due for the following reasons:

• The XML library (libxml2) might have not fully supported all the features we required, thus we could
have been forced to use more than one XML library at the same time.

• libxml2, while powerful, is often too complex and unintuitive to be used directly.

• For testing purposes, it is a good place to verify for errors and data corruption that otherwise would
be written directly to the XML file.

1http://www.xmlsoft.org/
2http://www.gnome.org/

Page 30 of 38 c©Comfort Eagle

Version 1.1
Detailed Design

Internal Documentation–White Dwarf Map Editor
Section 2: Design Notes

This module is the only one that has to and can maintain the in-memory copy of the XML data. But at the
same time, it has to do so with possibly several distinct XML documents. As a result, all the context of the
different functions is has to support has to come from the input data (the function’s arguments).

As a result, it is possible to make “XML Accessors” stateless, that is simply a collection of free functions.
Thus, for efficiency, this module was made in C. Being completely independant of the rest of the application,
and being in C, we decided that it should be an external static library that will be used by the editor.

2.2 ManagedObjects

ManagedObject

(active record)

ObjectManager

(gateway)

wdxml

(facade)

Database

Form

(observer)

Form

(observer)
...

Form

(observer)

libxml

Figure 19: “ManagedObjects” Module

The ManagedObject module provides subscription and access services to the database. We needed to keep
the data displayed on screen in sync with the database all the time, and since editing one object can modify
an other one (for instance, changing the name of an Actor should update the corresponding ActorRefs in
every Formations), we had two solution: polling the system or being notified by the system. Although the
former was probably easier to implement, we chose to implement the latter, in part for the challenge, but
mainly because it was considered more efficient.

The next question was to decide who would be notifying the observers. We did not want to couple the
database directly to the observers, so we brought in the ObjectManager class. There is only one for a
given database, and all access must go through it. Being aware of all the transactions, it is easy for the
ObjectManager to notify the observers about the change.

c©Comfort Eagle Page 31 of 38

Internal Documentation–White Dwarf Map Editor
Section 2: Design Notes

Version 1.1
Detailed Design

Finally, we wanted to limit the coupling between the forms displayed on the screen and the ObjectManager
(the forms shouldn’t have to be aware of the database formatting and technicalities) so we introduced the
ManagedObjects which would be used as active records, providing hidden access to the ObjectManager.

2.2.1 The EventHandlers

The event handlers are observers. They expect to be notified when the data they subscribed to has been
modified. The only requirement for an object to be elligible as an observer is to derive from the IEventHandler
interface.

This makes it easy to register a form from the user interface, or other objects wishing to remain in sync with
the database.

2.2.2 The ManagedObjects

The ManagedObjects are used as mediators between the database and another object accessing or chang-
ing information. They behave as active records, resolving references between data tables and providing an
abstraction from the actual database data format. ManagedObjects can be manupulated with the IManage-
dObject interface when the user does not need to know specific things about the object (for example, it’s
name, or the number of children), but can also use the specific interface (Actor, Formation, Episode, . . .)
to access functionalities specific to the object (Actor::setImage, FormationRef::setPosition, . . .).

For convenience, we also designed the ObjectFactory, which can build ManagedObject of the correct type
from an IManagedObject interface or a simple data node of unknown type.

2.2.3 The ObjectManager

The ObjectManager is a gateway for the database. Since the ObjectManager is aware of all the changes, it
is also in charge of notifying the observers.

2.3 MFC Classes

The MFC Classes implement the forms the user can interact with. Most of the design is straight forward,
since they are meant to provide a direct access to the ManagedObject’s interface, it is interesting to note
the design of the ObjectWindow and the Wizard.

2.3.1 The ObjectWindow

Throughout the system, very often the type of the managed object is unknown (it is used as an IManagedOb-
ject interface). Thus we designed the ObjectWindow, which behaves as a form factory. The ObjectWindow
takes an IManagedObject and will find the form which should be used to display.

2.3.2 The Wizard

There are many wizards (Scenario, Episode, Formation, . . .) but they all the same logic. Thus, using a
state pattern, we designed a generic wizard which is initialized with it’s initial state. The state knows which
form to display and knows the previous and the next step. Thus, coupling between the steps is limited to
the next and the previous step only, and the Wizard does not need to know what is being displayed.

Page 32 of 38 c©Comfort Eagle

Version 1.1
Detailed Design

Internal Documentation–White Dwarf Map Editor
Section 3: Reference Manual

Wizard WizardState

Welcome

PromptName

...

Confirm

n
e
x
tS
ta
te
()

p
re
v
io
u
s
S
ta
te
()

n
e
x
tS
ta
te
()

n
e
x
tS
ta
te
()

p
re
v
io
u
s
S
ta
te
()

p
re
v
io
u
s
S
ta
te
()

Figure 20: “Wizard” Module

3 Reference Manual

A complete low-level reference manual for the interfaces of the “XML Accessors” and “Managed Obejcts”
modules is available on-line at http://whitedwarf.sourceforge.net/refman.

c©Comfort Eagle Page 33 of 38

Internal Documentation–White Dwarf Map Editor
Section 3: Reference Manual

Version 1.1
Detailed Design

Page 34 of 38 c©Comfort Eagle

Testing

White Dwarf Map Editor

Version 1.1
Testing

Internal Documentation–White Dwarf Map Editor
Section 1: Test Plan

1 Test Plan

Here are the various test plans for the “XML Accessors” module, the “Managed Objects” module and the
MFC Classes, as described in Section 1 on page 29.

1.1 XML Accessors

This is the most critical module we had to write. Any error this module can produce will destroy most of
the functionalities of the editor.

Extreme programming was used to produce this module. The test code and source data were made and
revised as the functions in the module were made. As a result, the testing was “clear box”, since the tests
were made knowing in advance the way the functions were implemented. Finally, code inspection was made
by Benoit Nadeau and, for some functions, Gaspard Petit.

Note that this module is totally dependant on the libxml2 library. As a result, code inspection is not enough,
since we had to test that libxml2 works as expected.

The functions in this module are extremely string on the input data, since any “strange” input, even if
acceptable by the function, might be indicative that the higher-level modules are unstable. As a result,
several assertions were added to reduce the time between the defect has an effect and when it is detected.
The assertions are removed in the final, non-debug version of the editor when the other modules are properly
tested.

1.2 Managed Objects

Similarly to the “XML Accessors” module, this module was tested with both extreme programming and
clear-box testing. Also, code assertions were placed to detect defects as soon as possible.

The major difference between this module and “XML Accessors” concerning testing is that since this module
requires at least 10 times more code than “XML Accessors”, code inspection would have been too long. As a
result, the defects have to be detected with the test code or during integration testing with the MFC Classes.

1.3 MFC Classes

At the beginning of the project, we wanted to test the User Interface with a automatic scripting system wich
would reproduce the actions of a user. But since the “GUI Components” module was dropped and that the
logic of the application were moved inside the MFC Classes, it was then almost impossible, and much too
difficult, to produce any kind of UI scripting system.

As a result, the User Interface was tested simply by using the application, as some kind of black-box testing.
The tests were made as GUI functionality was added to the system, which makes it so that there were so
explicit “test code” or “test plan” for this module.

2 Testing Results and Quality Assessment

2.1 Process Used

At the beginning, we wanted to use the bug tracking system offered by sourceforge 3, but we did not do so
since the amount of defects to track at any one time was always small. Also, because we are a small team,
here is the process we used for development and correcting defects.

3http://sourceforge.net/tracker/?group_id=45915&atid=444472

c©Comfort Eagle Page 37 of 38

Internal Documentation–White Dwarf Map Editor
Section 2: Testing Results and Quality Assessment

Version 1.1
Testing

1. The developer implements a small part of the module, as small as possible.

2. The developer tests the code on his own.

3. As long as defects are found, until the code “seem” to work correctly, the defects are removed by the
same developer.

4. Only when the developer considers its own code “bug-free”, you copy the code in the CVS repository.

Thus, we always assume that the code in the “main branch” of the CVS repository is relatively stable. It
can happen that some defects are placed in the “main branch”, but since our team is only of 4 people, and
that we often “check in” our code, the person that made the error is quickly found and, usually, the error is
quickly corrected.

This process results in a more “pass or fail” situation for the code, where having some code of poor quality
in the “main branch” product is not acceptable. As a result, producing quality code was actually part of
the process, and bug tracking for some “test phase” was not needed.

Obviously, if the project had been of much higher complexity, or if the team size had been at least 8 people,
it would have been more difficult to quickly find and correct the defects, so a bug tracking system would
have been useful. This is what might happen for the SOEN 490 project

2.2 Results

The results of the test code for the “XML Accessors” and “Managed Objects” modules can be verified by
examining the XML documents produced by those modules and by validating, with the help of libxml2, the
documents against the expected structure described in a DTD document.

The results of the tests made for the MFC Classes were seen “visually” by the tester as development was
made.

The results were not logged, since we were in the situation described in Section 2.1. But the test code used
is kept in a CVS repository4 so that the other team members can quickly learn, by example, how the module
works, and to re-run the same tests if the team member changed some code that is not his own.

4The WhiteDwarf/Tests repository in SourceForge.

Page 38 of 38 c©Comfort Eagle

