Comfort Eagle

White Dwarf Map Editor

Software Architecture Document

Version 1.0

Revision History

| Date | Version | Description | Author

| 5/3/2002 | 1.0 | Initial Revision | W.D. Development Team

Table of Contents

1 Introduction 1
1.1 Purpose o e e 1
1.2 Scope . . o e 1
1.3 Definitions, Acronyms, and Abbreviations L 1

1.3.1 Definitions 1
1.3.2 ACTONYIS . . o v v v et e e e e 2
1.3.3 Abbreviations 2
1.4 References e 2
1.5 Overview o e e 2

2 Architectural Representation 3

3 Architectural Goals and Constraints 3

4 Use-Case View 4
4.1 Use-Case Realizations 5

4.1.1 Build a Scenario Using the Wizard 5
4.1.2 Add an Episode Using the Wizard 6
4.1.3 Add a Formation Using the Wizard 6
4.1.4 Add an Actor Using the Wizard o 6

5 Logical View 6

5.1 OVerview e 7
5.1.1 System Layer 7
5.1.2 Event Dispatcher 7
5.1.3 Event Handler 7
5.1.4 GUI Components v vt it e e 7
5.1.5 Rendering Engine Lo 7
5.1.6 Resource Manager e 7
5.1.7 Managed Objects L e 7
5.1.8 XML ACCeSSOr vt e 7
5.1.9 XML Parser L e e e 8

5.2 Architecturally Significant Design Packages L. 8
5.2.1 GUI Components o v v ittt e e e e e 8
5.2.2 Managed Objects L 8
5.2.3 XML AcCessor 8

iii

6 Process View

7 Deployement View

8 Implementation View

8.1 Overview e
8.2 Layerso e e s
8.2.1 Application e
8.2.2 Low-Level Libraries e
8.2.3 Third-Party Libraries

9 Data View

10 Size and Performance

11 Quality

Appendices

A DTD Specifications

B Use-Case Diagrams

C State Diagrams

D Incremental Development Plan

v

10
10
10
10
10
11

12
12
13

15

15

16

16

17

20

23

List of Figures

© 0 N O Ot s W N

e e e e e e T
S Ot W NN = O

Logical View Design Diagram L e 6
Process View Design Diagram L L Lo 9
Deployment View Design Diagram o e 10
Implementation View Design Diagram 0 oL 11
Organization of the Media Files and Librairies 12
DTD specifications for White Dwarf o Lo 16
Use-Cases (Player Formation Related) 17
Use-Cases (Image and Sound Related) 17
Use-Cases (Advanced) e 18
Use-Cases (Formation Related) 18
Use-Cases (Simple Interface) 19
Use-Cases (Actor Related)o . 19
UC-2 Build a Scenario Using the Wizard 20
UC-5 Add an Episode Using the Wizard 21
UC-35 Add a Formation Using the Wizard 21
UC-20 Add an Actor Using the Wizard 22

List of Tables

[B NGV)

Definitions L e 2
ACTONYINNS o ot e e e e e e e 2
Abbreviations L. 2
Use Cases List o o L o e 4
Incremental Development Plan oo 23

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 1 Introduction

1 Introduction

1.1 Purpose

This SAD is intented to provide a comprehensive architectural overview of the White Dwarf Map Editor.
Number of different architectural views will be used to depict the different architectural concepts and decis-
sions that will be used as a base of design for the system.

1.2 Scope

The White Dwarf Map Editor will be developed by Comfort Eagle corporation to create a map for the White
Dwarf Game. This SAD document provides an architectural overview of the White Dwarf Map Editor. Tt
describes the architecture that will be used to meet the different functional and non-functional requirements
derived from the project proposal and inputs from the various stakeholders.

In order to reach a broad audience, the architecture will be presented using a number of different architectural
views as proposed by the Rational Software[4] 54+1 model for software architecture.

1.3 Definitions, Acronyms, and Abbreviations

The following is a list of definitions, acronyms and abbreviations that will facilitate the understanding of the
document.

1.3.1 Definitions

Actor Object displayed on the screen (e.g. a ship or a bullet). Actors have a type, initial
energy level, weapon and state definitions. During the game, at run time, they will be
assigned a dynamic position and amount of energy.

Al Controls the behavior of all the actors in a formation.

Chapter A playable section of the game. Chapters are invisible in the gamer’s perspective
since the transitions between them are done in a continous manner, even if some things
change like the scrolling speed, the music, the background image, and so on. Beginning
of chapters are also used as points where the player ship reappears after its death. The
chapter finishes when there are no more formations left within it.

Document A formal grammar to a class of XML documents[1].

Type Defini-

tion

Episode A collection of chapters. It is presented to the gamer as one “level”’. At the beginning

the name of the level is presented and at the end the ship exits the screen to go to the
next level.

Extensible A flexible, multi-dimensional, text-oriented markup language[1].

Markup

Language

Formation Group of actors that can be controlled by a single Al It is often seen in the game as

a fleet of ships moving together or as a “boss” with multiple body parts. It can also
wrap a single actor or even an item.

Gamer Someone who plays video games.
Game En- | Modules of the game responsible of controlling the objects within the game. It is
gine usually closely linked with the AI and, of course, the map system.

Continued on next page. . .

©Comfort Eagle Page 1 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor

1 Introduction

Version 1.0
5/3/2002

Media Sounds, images, animations, and so on.

Scenario Collection of maps, actors, Al and different media. Scenarios may contain several
episodes.

State Different status that an actor can have throughout the game. Shooting, hit, low on

energy or normal are different states that can be associated with an actor. For each
state, an image and a sound can be associated.

White Dwarf

The tentative name of the game for which the game editor will be created.

1.3.2 Acronyms

Table 1: Definitions

Al Artificial Intelligence

DTD Document Type Definition[1]
FAQ Frequently Asked Questions
SSME Space Shooter Map Editor
SAD Software Architecture Document
GUI Graphical User Interface

GPU Graphical Processing Unit
RAM Random Access Memory

Ul User Interface

XML Extensible Markup Language[1]

Table 2: Acronymns

1.3.3 Abbreviations

NA

Not Applicable

s/he

He/She

Table 3: Abbreviations

1.4 References

[1] World Wide Web Consortium. Extensible markup language (xml) 1.0 (second edition). http://www.w3.
org/TR/2000/REC-xm1-20001006.

[2] Philippe Kruchten.

whitepapers/Pbk4pl.pdf.

The 4+1 view model of architecture.

http://www.rational.com/media/

[3] David Garland Mary Shaw. Software Architecture: Perspectives on an Emerging Discipline. Prentice

Hall, 1996.

[4] Rational software. http://www.rational.com.

1.5 Overview

This SAD presents the architecture of the White Dwarf Map Editor system using a set of different views
on the system. The views shown in this document are directly derived from the 5+1 model for software

Page 2 of 23

©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 2 Architectural Representation

architecture proposed by Rational Software[4].

Each view proposed will be accompanied by an explanation of the various components it contains and how
they interact with each other. Furthermore, each view will also be depicted visually using one or more
diagrams. The diagrams presented to facilitate the understanding will follow the notation described in the
441 architectural model[2].

2 Architectural Representation

The architecture of the system will be presented using the following views: use case view, logical view,
process view, deployment view, the implementation view and finally the data view.

The use case view will consist of a division of the various tasks that the distinct stakeholders can perform
with the system using actors and use cases. This view will be used to derive, elicit and validate the different
requirements of the system.

The logical view will be used to decompose the system into a set of key abstraction that will be utilized
to fulfill the functional requirements of the system. It will provide a high-level breakdown of the system in
terms of objects and object classes and their relations.

The process view will divide the system in terms of processes, threads and tasks in order to show how the
system will reach the non-functional requirements. This view is useful to show the different threads of control
and concurrency present within the system.

The deployment view will also be used to represent non-functional requirements. This view will show how
the different processes identified in the process view are mapped to the different processing nodes available.

The implementation view will depict how the system will be physically decomposed. This view is intented
to show how the system will be organized in terms of libraries and subsystem. Looking at this view, it will
be easy to see which components are shared among the different modules of the system and which ones are
reused from existing libraries.

The data view is intended to show how the system and the scenario it creates will be arranged at the files
and directories level.

3 Architectural Goals and Constraints

There are some key requirements and system constraints that have a significant bearing on the architecture.
These are:

1. The White Dwarf Map Editor must be consistent and useable with White Dwarf Game since it will be
eventually integrated with the latter.

2. The White Dwarf Map Editor must use the White Dwarf Game game engine to render and display the
map, i.e. the terminology and concepts must be easily recognizable from the game.

3. The White Dwarf Map Editor Ul must be representative of the White Dwarf Game.

4. The White Dwarf Map Editor must provide a sophisticated UI for the developers of the game, enabling
them to quickly create new exciting scenarios.

5. The White Dwarf Map Editor must also please to the new players of the game, by providing an intuitive
UI with simple language and concepts.

6. The White Dwarf Map Editor must run in the Windows 2000 labs at Concordia University. All
hardware and software constraints must be taken into account.

©Comfort Eagle Page 3 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor Version 1.0
4 Use-Case View 5/3/2002

7. The White Dwarf Map Editor should use XML to store configurations of the scenario.

Being that the software is an editor, the design of White Dwarf Map Editor will have a user-centered
approach, that is to say, that the design of the UI will have a significant impact on the architecture of the
software.

4 Use-Case View

The following is a list of use cases that represent some significant or central functionality to the final
system. However, only a few of the most important use cases will be used to do the main success scenarios.
Architecturely speaking, the other use case scenarios are simply a variation of the ones listed in Section 4.1.

The Use-Case Diagrams are in Appendix B on page 17.

UC-1 Create a New Scenario UcC-2 Build a Scenario Using the Wizard

UcC-3 Build a Scenario Using the Wizard UcC-4 View a Scenario

UC-5 Add a New Episode UcC-6 Add an Episode using the Wizard

ucC-7 Remove an Episode UcC-8 View an Episode

ucC-9 Change the Episode Order UC-10 | Add a Chapter

UC-11 Remove a Chapter UC-12 | View a Chapter

UC-13 Change the Chapter’s Order UcC-14 Change a Chapter’s Music

UcC-15 Change a Chapter’s Background UC-16 Change a Chapter’s Scrolling Speed

UC-17 | Add a Formation to a Chapter UC-18 Remove a Formation from a Chapter

UcC-19 Move a Formation in a Chapter UC-20 Add a New Actor

UcC-21 Add an Actor Using the Wizard UcC-22 Remove an Actor

UC-23 | View an Actor UC-24 | Change an Actor’s name

ucC-25 Change an Actor’s Default Image UC-26 Change an Actor’s Type

UC-27 | Change an Actor’s Weapon UC-28 | Change an Actor’s Item

UC-29 | Add a State to an Actor UC-30 | Remove a State to an Actor

UC-31 | View the State of an Actor UC-32 | Change the Image of a State

UC-33 Change the Sound of a State UC-34 Change the Name of a State

UC-35 | Add a New Formation UC-36 | Add a Formation Using the Wizard

UC-37 | Remove a Formation UC-38 View a Formation

UC-39 Change the Type of a Formation UC-40 Change the Name of a Formation

UC-41 Add an Actor to a Formation UC-42 Remove an Actor from a Formation

UC-43 | Change the Role of an Actor in a For- | UC-44 | Change the Item of a Formation
mation

UC-45 | Import an Image UC-46 | Remove an Image

ucC-47 Change the Name of an Image UC-48 Import a Sound

UC-49 | Remove a Sound UC-50 Change the Name of a Sound

UC-51 Add a New Player Formation UC-52 Add a Player Formation Using the

Wizard

UC-53 | Remove a Player Formation UC-54 | View a Player Formation

UC-55 Change the Type of a Player UC-56 | Add an Actor to a Player

UC-57 | Remove an Actor from a Player For- | UC-58 | Change the Role of an Actor in a
mation Player Formation

Table 4: Use Cases List

Some use case scenarios will be investigated further in Section 4.1. For now lets look at a brief description
of some scenarios to try to understand the motivation of the user in taking these actions.

Page 4 of 23 ©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 4 Use-Case View

e UC-2 Build a Scenario Using the Wizard

New users can use the “Scenario Wizard” to easily create a new scenario and all its contents, including
the episodes, chapters, formations, actors, and so on.

e UC-4 Add a New Episode

The developers and avid users will want to build episodes for the game. Episodes are commonly known
as a levels in the gaming jargon.

e UC-9 Add a Chapter

The user can add new chapters to already existing episodes or new episodes they created themselves.

e UC-34 Add a New Formation

The user can create new formations of actors. They can be placed in any chapter they desire once they
are created.

e UC-19 Add a New Actor

The user can add any number of actors to any formation.

e UC-28 Add a State to an Actor

As stated in Section 1.3.1, actors are objects displayed on the screen. Each actor has states, for example
a dead state, shot state, normal state, boosted state, and so on. For example we could add an invicible
state to a ship.

e UC-42 Change the Role of an Actor in a Formation

Formations are goups of actors that are a controlled by a single Al. Each actor has a specific role from
the point of view of the AI. This use case allows the user to change the role of an actor in its formation.
For example, there could be a ship formation, and one of the ship could be the “head ship” of the
formation. This use case allows the user to specify which ship in the formation is the “head” one.

e UC-13 Change a Chapter’s Music
Each chapter has a music associated to it. A user may decide to add or change the music played in
some chapter.

e UC-44 Import an Image

The user can import an image in a scenario. The image can then be used for an actor’s state or for
the background of a chapter.

4.1 Use-Case Realizations

To better understand the interaction of the user with the systemn, for each scenario listed in Section 4 a
detailed description and a sequence diagram will be given.

4.1.1 Build a Scenario Using the Wizard

In this Use-Case, the user must be helped to create a new scenario. To create a proper scenario, the user
must at minimum create one player formation and one episode. Thus, this Use-Case will make use of the Use-
Cases “UC-51 Add a Player Formation Using the Wizard” and “UC-5 Add an Episode using the Wizard”.
Those wizards will be called once for each new player formation or episode that the user want to create.

The state diagram for this Use-Case is in Figure 13 on page 20.

©Comfort Eagle Page 5 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor Version 1.0
5 Logical View 5/3/2002

4.1.2 Add an Episode Using the Wizard

The episode wizard guides the user into the creation of a new episode. The user is allowed to add chapters
and change the settings of each of Additionally, the user may decide to create a new formation before adding
it to the chapter. In such a case, the creation of the new formation is delegated to the Formation Wizard.

The state diagram for this Use-Case is in Figure 14 on page 21.
4.1.3 Add a Formation Using the Wizard
The formation wizard allows the user to create a new formation with step by step instructions. S/he will be

given a chance to add actors to the formation and even to create a new actor if it doesn’t already exist. In
that case, the work is delegated to the Actor Wizard.

The state diagram for this Use-Case is in Figure 15 on page 21.
4.1.4 Add an Actor Using the Wizard

The actor wizard guides the user into a step by step creation of an actor. This involves setting the parameters
of the actor and its states.

The state diagram for this Use-Case is in Figure 16 on page 22.

5 Logical View

XML Parser
XML
Accessor
Managed Display Ressource
Objects Engine Manager
GUI
Components Legend
I:I Class Category
v ’; "l Class
’“Evenr\\, T
,"I:ie’mdle’zr_ A ——— Association
—— Inheritance
v _Swy_stérﬁ\) o “Evert o o Usage
7 Layer ; 7 Dispatcher
Figure 1: Logical View Design Diagram

Page 6 of 23 ©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 5 Logical View

5.1 Overview

Editors normally adopt the blackboard architecture style[3] since they are a collection of tools that operate
on a shared data space.

5.1.1 System Layer
This is the Ul part of the operating system and is shown here only for completeness. It is the System Layer

itself that displays the GUI widgets and stores their properties. The System Layer has access to the Event
Dispatcher to create and receive new events from and to the different GUI widgets it manages.

5.1.2 Event Dispatcher
The Event Dispatcher is also part of the operating system and is shown here only for completeness. The

Event Dispatcher is in charge of sending and receiving events to the registered Event Handler of the user
application. Here, the events are Ul events which mostly correspond to user input and output.

5.1.3 Event Handler
The Event Handler is part of the White Dwarf Map Editor. Whenever the Event Dispatcher of the operating

system needs to send an event to the White Dwarf Map Editor application, it does so by calling the Event
Handler function with the event parameters.

5.1.4 GUI Components
The GUI Components provide an interface to the user to interact with the system. They are buttons,
windows, scrollbars, etc. They receive user events through the Event Handler interface and react by either

performing the task requested by the user or by delegating the task to another component by sending an
internal event. More information on this topic in Section 5.2.1

5.1.5 Rendering Engine

A group of functions that are specialized at rendering the game components on screen.

5.1.6 Resource Manager

A set of utility functions made to simplify access to the various media files the editor needs to move, copy,
remove and preview.

5.1.7 Managed Objects

The various objects which the editor needs to add and modify in the scenario data. More information on
this topic in Section 5.2.2.

5.1.8 XML Accessor

A set of functions used as a proxy to the actual XML data, as produced by the XML Parser. More information
on this topic in Section 5.2.3.

©Comfort Eagle Page 7 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor Version 1.0
5 Logical View 5/3/2002

5.1.9 XML Parser

This is a validating XML parser and generator. In other words, it can put in memory a structure representing
an XML file on disk (“parser”), validate the memory structure based on a XML DTD (“wvalidator”), and
properly put back on disk the memory structure (“generator”).

5.2 Architecturally Significant Design Packages
5.2.1 GUI Components

The GUI components provide an interface for the user to interact with the system. They respond to GUI
events by changing the state of the software.

GUI events can originate from the operating system or from the Managed Objects. The events received from
the operating system will be handled through a callback system, while the events received from the Managed
Objects will be handled through a subscriber system.

The events from the operating system will reach the event dispatchers first. These behave as adapters to
dispatch the events to the GUI Components. Those events are direct consequence of an action from the user.

The events from the Managed Objects will be sent directly through the Event Handler interface and result
from a modification to the XML data (e.g. if a node was removed, added or modified). When the GUI
components need to display information about an XML node, they provide their Event Handler interface
and expect to be informed whenever the XML node is modified. That way, they can react by updating the
screen or closing if the node was deleted.

5.2.2 Managed Objects

The Managed Objects are object-oriented representations of the various information that need to be stored
for a scenario. Each class is a proxy of the actual operations done on the parsed XML data, in memory,
through the XML Accessor functions.

The primary goal of the Managed Objects is to ensure that the XML data remains valid, i.e. follows the
rules of the DTD file (refer to Section 9). This simplifies the use of the XML data, as it is not required to
constantly worry about what rules need to be followed to make sure the XML data remains valid.

Also, the Managed Objects do whatever conversion is needed to convert the data, as it is logically seen, into
properly formatted XML data. This includes converting numbers between their numerical value in memory
and their latin-iso-1 character representation.

The term “Managed” in “Managed Objects” means that this component is always aware of what elements
in the XML data are currently referenced. This means, for example, that any class that makes use of some
Managed Object will be informed when another class removes that object from the XML data. This is done
by sending some events to the Event Handler.

5.2.3 XML Accessor

A collection of straightforward, low-level functions which read and modify the parsed XML data. In this
module, the data is modified without any restriction.

All operations that might need to be done on the XML data need to be implemented here. This includes,
but is not limited to:

e Find an element from its ID.

Page 8 of 23 ©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 6 Process View

e Add a new element.

e Enumerate through the list of attributes of an element.

Change the ordering of two elements.

Change the value of an attribute.

This is done primarily because the system will use a “third-party” XML Parser. Using this architecture
scheme, it will be easily feasible to change to any other kind of XML Parser, without requiring too much
overhead since only this component will need to be changed.

6 Process View
Since every window of the system must concurently proccess information in order to be correctly updated
each of them will executed in a separate thread of control.

The window were the actual chapter is rendered and display, called Chapter Display, will be threated differ-
ently from the other windows since it will need to use the OpenGL libraries and the game engine.

Map Editor

Window Window Window Chapter
Display

Legend

E Process

Figure 2: Process View Design Diagram

7 Deployement View

Although the system would take advantage of a system with multiple processors, where the load of each
window thread could be shared, the minimal requirement is a single processor machine with a graphics card
supporting OpenGL hardware acceleration. Typically, the system should work with 50MB of disk space and
32MB of available RAM.

All the threads except the Chapter Display will be processed by the main processor. The Chapter Display
will be processed on the GPU of the graphics card.

©Comfort Eagle Page 9 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor Version 1.0

8 Implementation View 5/3/2002
Central Processing Unit Graphic Processing Unit
/ Window /4—7/ Window /47/ Window /
/ Display
Legend

Processing Node

D Process
<—>

Bidirectional
Communication
Unidirectional

e o
Communication

Figure 3: Deployment View Design Diagram

8 Implementation View

8.1 Overview

Application The application layer provides a graphical interface that allows the user to access and modify
the XML data of the scenario. It relies entirely on the servies of the layer immediately below it, and thus
it is platform independant. The application is the logic of the software, and it implements this logic with
using the low-level library services.

Low-Level Libraries Low-level libraries consist of shared code between the game and the editor. Those
will be the core of the editor, and their reuse in the game will ensure consistency between the two. They
are also platform independant and can be thought as specialisations of the third-party libraries in order to
provide high level services to the application. This layer is as platform independant as the third-party library
they are built with.

Third-Party Librarties Third-party libraries are the building blocks of the application. They provide
the most basic services, such as XML validation and parsing, display of windows and widgets and 2D graphics
rendering.

8.2 Layers
8.2.1 Application

Editor Engine: The Editor Engine provides graphical tools to manage the XML Objects. It is written in
C++.

8.2.2 Low-Level Libraries

XML Object LIbrary: The XML Object Library provides services to reading and writing Managed
Objects from XML data. This library will be shared between the editor and the game. Although internally
it will be written in C++, it will provide a C interface so that it can be loaded and linked dynamically.

Page 10 of 23 ©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 8 Implementation View

>

Editor

Engine Application

Application Specific

!

GUI endering | Low-Level
Services Engine | Libraries

XML
Objects
Library

\ 4

Validating
XML Parser/
Generator
'

\ 4

Third-Party
Libraries

Win32 OpenGL

aliia Bl

Domain Independant

<

Legend

% Module

B — Reference

Figure 4: Implementation View Design Diagram

GUI Services: The GUI Services play the role of an adapter between the operating system GUI compo-
nents (windows and widgets) and the Engine Editor. This scheme provides a way to keep the Editor Engine
platform independant. It will be written in C++-. Although it is considered that the system will eventually
have different ports, it will initially be written using the MFC services. The GUI Services implement the
GUI Components. As the public interface of this module is in C++, it will be statically linked with the
Editor Engine.

Rendering Engine: The Rendering Engine provides services to display a chapter on the screen. This
library will be used both in the editor and in the game and will be written in C using the OpenGL libraries.

8.2.3 Third-Party Libraries

XML Parser We will use libxml to parse the XML from the ascii file. This component will be statically
linked to the XML Object Library.

Win32 The GUI Services component will be dynamically linked to Win32.

OpenGL The graphics for the preview of the chapters will be done using the services of OpenGL. This
component will be dynamically linked to the Rendering Engine.

©Comfort Eagle Page 11 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor Version 1.0
9 Data View 5/3/2002

9 Data View

9.1 Files

Figure 5 shows how the media files and libraries will be organized on the file system. A word in italics means
that it is a directory (the trailing slash can be ignored), otherwise it is a file. The names shown here were
chosen only as examples and may change during development.

e White Dwarf Game
e White Dwarf Map Editor
e Libraries/

— Rendering Library
— XML Library

e Resources/

Imagel.png
— Image2.png
— Soundl.aif
— Sound?2.aif

e Scenarios/

— Scenariol /

* data.xml

* Resources/
- NewImage.png
- NewSound.aif

— Scenario2/

Figure 5: Organization of the Media Files and Librairies

The directory “Libraries” contains code libraries that will be used both by the White Dwarf Game and the
White Dwarf Map Editor. This is why the directory is at the same level as both the Game and the Map
Editor.

The directory “Resources” which is at the same level as the White Dwarf Game and White Dwarf Map Editor
contains the media shared amongst all the different scenarios of the game.

The directory “Scenarios” contains the different scenarios that can be played in the White Dwarf Game or
edited in the White Dwarf Map Editor.

Even if a scenario is self-contained, since each one has its own “Resources” directory containing their own
media files, it can also access the shared media found in the top-level “Resources” directory. Obviously, the

Page 12 of 23 ©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 9 Data View

White Dwarf Map Editor will not allow the user to change the shared media, since all scenarios will assume
that it was not modified and they might not work if the shared media was changed.

Finally, the information for a scenario is contained in a single XML file (here, “data.zml”) that was generated
earlier by the White Dwarf Map Editor.

9.2 XML Data

As often mentioned earlier, the information for a scenario is stored in an XML file. The advantages of doing
so are:

1. Several third-party libraries can already parse, validate and generate XML files;
2. XML can easily represent multi-dimentional structures;

3. XML documents can be validated by a DTD which formally captures almost all the requirements of
the data;

4. XML documents can be examined and edited with any text editor.

Figure 6 on page 16 shows the DTD file that will be used by the White Dwarf Map Editor and the White
Dwarf Game to validate the data XML file of a scenario. Note that the file can change during the develop-
ment.

From Figure 6, we can see several things.

An episode contains at least one chapter, a chapter contains at least one reference to a formation, a formation
has at least one reference to an actor, and so on.

Here, references are used whenever an element can be referenced more than once. Otherwise, if an element
can be referenced only once, we put the element within the other element that contains it.

Note that it is a limitation of XML that while an IDREF references an ID attribute of another tag, it cannot
be specified what tag it should be specifically referencing. This is currently the only data requirement that
cannot be fully covered by the DTD.

The first ELEMENT, which is for the whole document, lists all the elements that are at the “root level” of
the XML data. All the other elements are rooted at another element.

Here’s a quick explanation of the different elements that the White Dwarf Map Editor can generate. Most
of the terms used here are defined in Section 1.3.1.

episode

An episode should contain at least one chapter.

chapter

A chapter contains at least one reference to a formation. It needs to be within a single episode.

The attribute music refers to a sound element. speed is a numerical value which represents the scrolling
speed of the chapter.

speed is a human-readable integer in decimal representation. It can be negative.

©Comfort Eagle Page 13 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor Version 1.0
9 Data View 5/3/2002

background

A background is an image that scrolls as the chapter scrolls on screen.

The attribute image refers to an iamge element. layer is a numerical value which represents the relative
depth of the background layer.

layer is a human-readable floating point number in decimal representation.
formationRef

A formation reference is a reference to a formation element. It contains some additional information to
make it relevent in a chapter, for example its position (z and y).

z and y, like most of the other numerical values in the DTD, are represented in human-readable decimal
values. They can be negative.

formation

A formation is the information globally meaningful to the formation of actors. It contains zero or more
references to an actor, which are the initial actors available in the formation.

The attribute ai is a constant which refers to some game function that will control the actors in the formation.
item refers to a formation which will be “dropped” in the game whenever the formation is destroyed.

player

A player formation is a special kind of formation which is controlled by the gamer. At least one player
formation must exist in the XML data.

actorRef

An actor reference is a reference to an actor. It is used by formation and player.

actor

An actor is referenced by a formation or a player.

The attribute image refers to an image element. The attribute type refers to some game function that will
control the actor’s states. weapon refers to a formation which is controlled by the actor. item, what is
“dropped” when the actor is destroyed, refers again to a formation.

The actor has zero or more states.

state

A state simply has a name and refers to an image and a sound.

image

An image simply refers to a fileName given someid. The id is always the one used in the XML data to refer
to the image so that the file name can be changed without having to change all the elements that refer to it.

Page 14 of 23 ©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 10 Size and Performance

sound

Similar to image, a sound refers to a fileName given some id.

10 Size and Performance
The chosen architecture will support the following size and performance requirements:

1. The White Dwarf Map Editor must require less than 50MB of disk space.
2. The White Dwarf Map Editor must require less than 32MB of RAM.
3. The White Dwarf Map Editor must be able to save the current work within 10 seconds.

4. The size of the scenario created by the White Dwarf Map Editor must be sufficiently small to permit
reasonable download time.

11 Quality
The chosen architecture will support the following quality requirements:

1. The GUI must be compliant with Windows 2000.

2. The GUI must be presented with intuitive concepts. Using the system main functions should be very
intuitive. Anyone familiar with side scroller games should be able to use the basic functionalities of
the SSME by interacting with it less than 30 minutes.

3. The GUI of the SSME must be representative features supported by the White Dwarf Game.

4. The GUI must reflect the organization of a scenario.

5. The White Dwarf Map Editor must create scenario in a format that allows easy on-line distribution.
6. The White Dwarf Map Editor must create backup intermittently.

7. The software will contain a help menu which will provide the first source of help. It will be useful to
solve simple problems and answer general questions that the user might have.

©Comfort Eagle Page 15 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor

Version 1.0
5/3/2002

Appendices

A DTD Specifications

1 <!ELEMENT scenario (episode+, player+, formation*, actork, imagex, soundx*)>

<!ELEMENT episode (chapter+)>

<!ELEMENT chapter (formationRef+) (background)>
5 <!ATTLIST chapter music IDREF #IMPLIED>

<!ATTLIST chapter speed CDATA #IMPLIED>

<IELEMENT background EMPTY>

<V'ATTLIST background image IDREF #REQUIRED>

<IATTLIST background layer CDATA #REQUIRED>
10 <!ELEMENT formationRef EMPTY>

<V'ATTLIST formationRef x CDATA #REQUIRED>

<IATTLIST formationRef y CDATA #REQUIRED>

<VATTLIST formationRef id IDREF #REQUIRED>

15 <!ELEMENT formation (actorRef*)>
<V'ATTLIST formation id ID #REQUIRED>
<V'ATTLIST formation ai CDATA #REQUIRED>
<!ATTLIST formation item IDREF #IMPLIED>
<!ELEMENT player (actorRef+)>

20 <!ELEMENT actorRef EMPTY>
<VATTLIST actorRef name IDREF #REQUIRED>

<!ELEMENT actor (statex)>
<VATTLIST actor name ID #REQUIRED>

25 <IATTLIST actor image IDREF #REQUIRED>
<VATTLIST actor type CDATA #REQUIRED>
<!'ATTLIST actor weapon IDREF #IMPLIED>
<VATTLIST actor item IDREF #IMPLIED>
<!ELEMENT state EMPTY>

30 <!'ATTLIST state name CDATA #REQUIRED>
<!ATTLIST state image IDREF #IMPLIED>
<!ATTLIST state sound IDREF #IMPLIED>

<!ELEMENT image EMPTY>

35 <IATTLIST image id ID #REQUIRED>
<IATTLIST image fileName CDATA #REQUIRED>
<!ELEMENT sound EMPTY>
<IATTLIST sound id ID #REQUIRED>
<IATTLIST sound fileName CDATA #REQUIRED>

Figure 6: DTD specifications for White Dwarf

Page 16 of 23

©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 B Use-Case Diagrams

B Use-Case Diagrams

X

Advanced User

O

Developer
UC-3: View a Scenario <<Uses>3C-57: Change the Role of an Actor

: ; in a Player Formation
(from Logical View)

Figure 7: Use-Cases (Player Formation Related)

X -

UC-46:Change the Name of an

Advanced User
Image

Developer <_>< 77777777 Q

UC-3: View a Scenario <<Uses>> yC-49: Change the Name ofa

(from Logical View) Sound

Figure 8: Use-Cases (Image and Sound Related)

©Comfort Eagle Page 17 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
B Use-Case Diagrams

Version 1.0
5/3/2002

O O

UC-1: Create Custom Scenario .
{}A:Add a New Episode

AN
NN

AN
Ue.7: Vle n Episode
N \

Advanced User

Developer

N -
O
C O~

~~"UC-50:Add a New Player Form ation
uC-48: Rerwe a Sound

-

UC-53: View a Player Formation

Figure 9: Use-Cases (Advanced)

A

Advanced User

O

UC-38: Change the Type ofa
Form ation

/.
O

UC-39: Change the Name of a
Form ation

-

Developer

UC-3: View a Scenario UC-43: Change the Item ofa
Formation

Figure 10: Use-Cases (Formation Related)

Page 18 of 23

©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 B Use-Case Diagrams

x

New User

- O
O UC-2: Build Scenario Using Wizard

UC-51: Add Player \V
Wizard

tion Using

UC-5: Add Episode Using Wizard

T
2

V
Advanced User
C-35:Add Formation Using Wizarc
v
X - - N N
/‘ \ /UC-ZO.Add Actor Using Wizard
Developer
=
UC-3:View a Scenario UC-47: Importa Sound

Figure 11: Use-Cases (Simple Interface)

O

UC-23: Change an Actors Name
IC-24:Change an Actors Default
Image

Adwanced User

Developer

UC-3: View a Scenario UC-30: View the State of an Actor <<Uses>> UC-33: Change the Name of a State

Figure 12: Use-Cases (Actor Related)

©Comfort Eagle

Page 19 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor

C State Diagrams

Version 1.0
5/3/2002

C State Diagrams

°

New Player Wizard

Guides the user into creating a new player

More
Players?

New Episode Wizard
Guides the user into creating a new episode

AQJ

More
Episodes?

o
z

Save New Scenario

Figure 13:

UC-2 Build a Scenario Using the Wizard

Page 20 of 23

©Comfort Eagle

Version 1.0
5/3/2002

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor

C State Diagrams

YES

Request Music and Background
Ask the user to choose the music and
background image for this part of the level

X
(o]

Previous

Request Scroll Speed
Ask the user to choose the speed at which this
part of the level should scroll

X
(o]

Previous

Let the user ad

Add Formations New H
d formations to this part of the [~

lOrmation

level. Also give him a chance to create new OHK /Cancel
l<—

formations.

X
(o]

Previous

Request Level Has More Parts

Ask the user if

the level has more parts]

©
z

Add the Level to the Scenario }—

New Formation Wizard

Figure 14: UC-5 Add an Episode Using the Wizard

Request Formation Name Nameg
Ask the user to enter a unique formation name

Taken

Name Already Taken

OK

Explain that the name is already
taken and that the episode could

OK

Previous

Ask the user to choose the type of formation]

Request Formation Type

OK

Previous

Ask if the u:

the formation.

Add Actor To Formation
ser wishes to add another actor to

ke}
T
<

Carjcel

Set the role

Set Actor Role
of the actor

X
o

Add the Actor to the Formation

not be created.

Figure 15: UC-35 Add a Formation Using the Wizard

©Comfort Eagle

Page 21 of 23

SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor

C State Diagrams

Version 1.0
5/3/2002

°

Request Actor Name
Ask the user to enter a unique actor name

Name Taken Name Already Taken

Explain that the name is already
OK taken and that the episode could

OK
Previous

Request Actor Type

not be created.

Cance,

Ask the user to choose the type of actor Cancel
x g
S 2
&
Add State To Actor
Ask if the user wishes to add states to the actor Done lAdd the F to the Scenario
kst
<
me Taken Name Already Taken

Set State Type
Set the type of the state

x

TR

Explain that the name is already
OK taken and that the episode could
not be created.

[S]

Set State Image and Sound Add Image Import Image J
Associate an image and a sound to the state Add S,
ound
N{ Import Sound)

S

S
Add the State to the Actor]

Figure 16: UC-20 Add an Actor Using the Wizard

Page 22 of 23

©Comfort Eagle

Version 1.0 SOFTWARE ARCHITECTURE DOCUMENT- White Dwarf Map Editor
5/3/2002 D Incremental Development Plan

D Incremental Development Plan

The development will be splited in three parts. One team will work on the XML services while the other
one will work on the implementation of the GUI. Both teams will work separately using a driver and a
stub respectively. When the projects are mature enough, they will be liked together through an additional
even-based layer.

Table 5 presents the incremental plan.

| Increment ID | Description

1 Implementation of the Validation and I/O | Implementation of the GUI primitives
XML functions

2 Implementation the XML Node and XML | Implementation of the Dialogs
check-out and check-in services

3 Implementation of the Managed Object | Implementation of the Chapter Rendering
Layer

4 Implementation of the event callback support and replacing the stub and driver with
actual modules.

Table 5: Incremental Development Plan

©Comfort Eagle Page 23 of 23

